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1 Dense ED

1.1 Discussion

The Transverse Field Ising Model (TFIM) for a spin chain of length L with parameter
h (and zero indexed) is given by

Ĥ = −
L−2∑
j=0

σ̂zj σ̂
z
j+1 −

(
σ̂zL−1σ̂

z
0

)
− h

L−1∑
j=0

σ̂xj . (1)

I wrote two algorithms for initializing the dense Hamiltonian corresponding to the
TFIM: a direct construction by taking tensor products (implied in Ĥ above) and a direct
construction for any vector by representing the Pauli operators as bitwise operations on
a binary representation of the computational basis.

Since the latter is less prone to memory allocation errors (unlike the former, it does
not need to repeatedly sum large matrices and does not use a recursive implementation)
I was more comfortable using it.

1.2 Results

After generating the dense Hamiltonian, I diagonalized it with the Fortran LAPACK95
routine syev to obtain the spectrum of the Hamiltonian. For this problem, we are just
interested in the ground state energies as a function of the parameters L and h.
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A2: Lowest eigenvalue of closed system

As a function of L, it appears that in figures A1 and A2, larger values of L have
lower ground state energies that get increasingly lower as h increases. This is because
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in the large h regime, the system favors aligning with the transverse applied field, and
since those terms in the Hamiltonian act on each site, the more site there are, the lower
energy can be achieved. In addition, the logarithmic scale on the horizontal axis shows
a shoulder around h ≈ 1, with the ground state energy approximately constant at h < 1

and rapidly decreasing for h > 1. And I don’t know why they look like low-pass filters
– maybe that is just me.
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A3: Difference in lowest eigenvalues

This figure shows how much lower in energy the ground state of the closed system
is compared to that of the open system. Notably, the energy difference has a sigmoid
shape as a function of h, with the inflection point at about the critical value of h = 1.
Thus, the different boundary conditions of the system have a substantial difference on
the ground state energy in the h < 1 phase, but this becomes negligible for h >> 1

due to the interaction with the transverse field. Also, the energy gap is nearly identical
as a function of system size, due to the fact the main difference is due to the additional
term in the Hamiltonian with closed boundaries.
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2 Sparse ED

2.1 Discussion

Using intel MKL, I would have two routines for solving sparse eigenvalue problems for
real matrices: ?feast scsrev for finding parts of a spectra, and mkl sparse ? ev
for finding the extremal eigenvalues. The former routine requires a 3-array CSR for-
mat, and the latter requires the MKL Sparse BLAS CSR format, which is a 4-array
format. I will probably implement a function to do that later in the course, because
for this set I wrote my own Lanczos routine for finding extremal eigenvalues, and it
works beautifully with impressive speed. Therefore, I circumvented the use sparse ar-
ray formats because the algorithm only needs a function that can multiply a vector by
the Hamiltonian. So I probably shouldn’t call this section “Sparse ED”.

I implemented the Lanczos routine as described on Wikipedia. I am comfortably
able to push my Lanczos implementation to sizes of L = 24 for m = 32 eigenvalues,
but I won’t risk more since each run already takes a minute at that level. In some cases
I knew I hit a computational limit when I tried to run the program and experienced a
segmentation fault error (some of these can be avoided by increasing the stack limit).
In other cases the compiler simply failed to compile due to allocation overflows.

Returning to the question of implementing sparse format at a later date, I will be
faced with two very different implementations that mirror two very different imple-
mentations I made for the dense case. If I go to tensor product route, I will have to find
a way to tensor product sparse matrices from scratch, in whatever format is needed.
If I go the bitwise route, I will have to find out how to put together the sparse matrix
one row at a time In both cases, I will have to decide whether I consider using only
a symmetric representation or a full one. In both cases, I will have to find a way to
figure out the size of the sparse matrix, ideally without ever creating the dense ma-
trix, which presents a problem with allocating the arrays for the sparse matrix because
I don’t know their size apriori (hopefully without having to create a new array every
time I need to add new elements). Perhaps a linked list would work well to build the
matrix, and then convert the linked list into an array. The only thing I know is that the
problem becomes increasingly sparse in larger dimensions.

2.2 Results

The plot next page opens a can of worms: the Lanczos algorithm has a lot of behaviors
going on. A few I can mention are that it get the largest and smallest eigenvalues
(and some in the middle, where the lines intersect) accurately. Generally, the Lanczos
spectrum is much flatter than the dense spectrum: it looks linear whereas the dense
spectrum has curves. Also, the Lanczos spectrum has regions where it plateaus – in
particular and the ends of the spectrum. I suspect that in these regions, the algorithm
has over-converged: too many eigenvalues were attracted to the extremes (this sounds
like a queue for some fun music).
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I wanted to study the convergence of the Lanczos algorithm as it relates to the
overconvergence issue noticed above. Perhaps by asking the algorithm to find fewer
eigenvalues, it doesn’t overconverge as much. Figure B2 shows how the Lanczos spec-
trum evolves as a function of the requested number of eigenvalues (with rescaled x
axis). To me it seems like 32 eigenvalues captures all the details the Lanczos spectrum
seems capable of, but with less overconvergence.

B2: Lanczos convergence: closed b.c., L = 8
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B3: Comparison of numerical spectra
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On the previous page I plotted much more data at different values of h, L, and
for each boundary condition. In each case, I asked the Lanczos algorithm for the entire
spectrum. All I can add about those plots is that we still see the accuracy of the Lanczos
method at the extremal states, but due to overconvergence problems when computing
all the eigenvalues we get erroneous spectra.

When I pushed the Lanzos implementation to larger values of L, I intentionally told
the solver to compute fewer eigenvalues, only 32. This leads to the following distorted
spectra, which nonetheless will obtain accurate ground states.

B4: Lanczos spectra with 32 eigenvalues
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3 Convergence with system size

3.1 Discussion

In this section, we study how the energy of the ground state behaves as we increase the
system length. This means running a lot of simulations.

3.2 Results

A range of simulations for the ground state energy were conducted with the Lanczos
solver and only obtaining 32 eigenvalues. These simulations went to the largest system
size I could simulate in a minute, L = 24.

C1: Convergence of ground state energy per site
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Figure C1 shows the ground state energy per site, λ0/L as a function of h, L and
the boundary conditions. Larger values of h result in lower values of λ0/L. Open
boundary conditions allow for substantially more variation in λ0/L, though it appears
to be decaying at least algebraically. Closed boundary conditions vary in λ0 about one
order of magnitude less than the open boundary conditions, when you compare the
decimal digits which appear to vary in each plot. The top left panel shows an unusally
large spike at L = 22, which may be due to numerical errors at large L while keeping
the number of eigenvalues fixed. Despite the spike in the closed systems, their λ0/L
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varies much less than in the open systems, which makes closed systems a better choice
to study to avoid finite-size effects.

In figure C2 is plotted the quantity (λ0(L)− λ0(L− 2))/2 for only systems with
open boundary conditions. This represents an additional energy acquired per site at
the center of the chain at that size. In general, it is a quantity that decreases with the
system size, though there does seem to be a spike that at L = 24 that might be due
to numerical errors. The decreasing trend indicates the diminishing effect of the open
boundaries as the size of the bulk system increases.

C2: Additional ground state energy per center site, open b.c.
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4 Finding the quantum phase transition

4.1 Discussion

Here we are studying the quantum phase transition at the largest system size in terms
of the effect on the excitation gap from the ground state.

4.2 Results

D1: Ground state excitation gap, L = 24 , closed b.c.
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Figure D1, left panel, shows the first four eigenvalues from each Lanczos diago-
nalization. The leftmost value of h resulted in overconvergence, which is why the gap
from the ground state to the first excited state is 0 on the right panel for h = 0.3. On
the right panel, it appears as though there is a local minimum in the ground state gap at
h = 1. I am not sure why the gap shrinks for small h, but I would assume that has to do
with errors from my implementation fo the Lanczos method. I would like to estimate
the exponent ν describing λ0 − λ1 ∝ |h− 1|ν , however I’m afraid my data just isn’t
good enough for that. I would probably need a more accurate solver and to scan many
more points near the critical value.

In figure D2, I plotted the fidelity of the ground state I obtained with my Lanczos
implementation, using a step size of dh = 0.01. There appears to be a deep dip at
about h = 0.95, but there are also dips for smaller h. My Lanczos routine is probably
making mistakes in this h < 1 region, where we know that the spectrum is steeper
based on the dense diagonalization spectra in Figure B3.
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5 Magnetic ordering

5.1 Discussion

In this section we look at the long-range order of spins within the Ising chain in terms
of the correlations of the spins orientations.

5.2 Results
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E1: Long-range magnetic order, L = 24 , closed b.c.

In the plot above is shown the variance of the magnetization per site. Again, my
solver seems to have failed at h = 0.3 and large L. Ignoring this, for small h < 1,
it is a constant with respect to L. This is the ferromagnetic phase when the magnet is
saturated. For h = 1, the magnetization variance wavers or decays slightly. For h > 1,
the variance of the magnetization per site, decreases slowly, likely due to the alignment
of the spins with the transverse field.

In figure E2, the parwise correlator, Czz(r) =
〈
σz1σ

z
1+r

〉
is plotted for various

chain lengths and characteristic values of h. For h < 1 (except for large L where my
implementation falls short), the correlation is nearly 1 across the chain. For h = 1, the
correlation drops along the length of the chain (to lower values at midpoints of longer
chains), but never zero. For h > 1, the correlation drops fairly quickly to zero away
from the first site on the chain. In summary, for r at the midpoint, the correlation is
about 1 for h < 1, decreasing with L at the critical point, and 0 for h > 1.
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E2: Pairwise correlation, closed b.c.
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6 Using Ising symmetry

6.1 Discussion

To transfer from the z basis, {|↑〉 , |↓〉}, to the x basis, {|+〉 , |−〉}, use this operator

T̂ =
1√
2

(
1 1

1 −1

)
. (2)

Notably, T is its own inverse. Rotating the Hamiltonian does the following:

Ĥz |ψ〉z →

∏
j

T̂j

Ĥz |ψ〉z (3)

=

∏
j

T̂j

Ĥz

∏
j

T̂j

∏
j

T̂j

 |ψ〉z (4)

= Ĥx |ψ〉x . (5)

The form of Hx is as follows:

Ĥx =

∏
j

T̂j

Ĥz

∏
j

T̂j

 (6)

=

∏
j

T̂j

− L−2∑
j=0

σ̂zj σ̂
z
j+1 − σ̂zL−1σ̂

z
0 − h

L−1∑
j=0

σ̂xj

∏
j

T̂j

 (7)

=−
L−2∑
j=0

T̂j σ̂
z
j T̂j T̂j+1σ̂

z
j+1T̂j+1 − T̂L−1σ̂

z
L−1T̂L−1T̂0σ̂

z
0 T̂0 − h

L−1∑
j=0

T̂j σ̂
x
j T̂j (8)

=−
L−2∑
j=0

σ̂xj σ̂
x
j+1 − σ̂xL−1σ̂

x
0 − h

L−1∑
j=0

σ̂zj . (9)

This effectively interchanges the role of the sign-flip and spin-flip operators. (Sorry if
the notation is confusing: the Hamiltonian is in the x basis but the Pauli matrices still
have the same matrix elements as in the z basis)

With this form of the Hamiltonian, we are one permutation away from expressing
the disjoint symmetry sectors as a Hamiltonian in block diagonal form, with each block
acting on its own parity sector. Recall the parity operator

Ûz =
∏
j

σ̂xj (10)

which in the x basis is diagonal:

Ûx =
∏
j

σ̂zj . (11)
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Notice how if we zero-index the basis states in the x basis by integers, the parity
operator is the same as the parity of the bit string of the integer if we take the bit
parity of zero to correspond to + eigenstates and the bit parity of one to correspond to -
eigenstates. So in order to separate the x basis, we just need an efficient way to flip bit
strings that acts as a permutation of Ĥx to transform it into block diagonal form.

Fix L and let |+j〉 , |−j〉 denote the j-th basis element of the x basis in the +
and - parity sectors, respectively (Note there are 2L−1 states in each sector). Let’s
zero index these states and find a bit operator map that sends the index j to the kth
element of the computational x basis, whose Hamiltonian, Ĥx, we know. Note we also
need the inverse permutation in order to correctly reassign the action of terms of the
Hamiltonian.

One way to do this is to calculate the diagonal entries of Ûx, and to store an array
which in the j-th index has the value k. The reverse map is obtained by placing j
in the k-th entry of the array which was the diagonal of Ûx The diagonal of Ûx can
be constructed recursively as follows: let bj be a bit string of length 2j , starting with
b1 = (0, 1), and obtain bj+1 by concatentation: bj+1 =

(
bj ,−bj

)
, where a minus sign

denotes a bitwise flip operator.
Note that the kth entry of bj is the bit string parity of k (zero indexed). The first

few bit strings are:

b1 =(0, 1) (12)

b2 =(0, 1, 1, 0) (13)

b3 =(0, 1, 1, 0, 1, 0, 0, 1) (14)

which translates to the following diagonal entries of Ûx:(
Ûx

)L=1

ii
=(1,−1) (15)(

Ûx

)L=2

ii
=(1,−1,−1, 1) (16)(

Ûx

)L=3

ii
=(1,−1,−1, 1,−1, 1, 1,−1). (17)

Thus these indices provide all the bookkeeping necessary to take the symmetry sectors
into a block diagonal form.

If you study this experimentally, perhaps using the parity diag function I wrote
in the tfim dense module, one finds that for states in H+ symmetry sector, the
efficient bit operator that does the bookkeeping from the j-th + parity state to the k-th
x basis state is k = 2∗j+ε(j) where ε is the bit string parity operator (ε(j) = 0 if j has
an even number of 1’s and ε(j) = 1 if j has an odd number of 1’s). Likewise, for the j-
th state in the - sector, it corresponds to k = 2∗j+(ε−1(j) (where ε−1(j) = ε(j+1)).
The inverse operation in both cases is j = (k − (k%2))/2. In Fortran:

1 k = (2*j + poppar(j)) ! from + sector to full basis
2 k = (2*j + (1 .xor. poppar(j)) ! from - sector to full basis
3 j = (k - mod(k, 2)) / 2 ! Inverse in both sectors
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6.2 Results

The first thing to look at is how the values of the ground state energy differ in the
different sectors.
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F1: Ground state sector energy gap, closed b.c., h = 0.3

Well indeed, the energy splitting in the ground state, which in the plot is normalized
by the system size, appears to decay exponentially with the system size, or at least very
quickly. It does also seem like there is some numerical error at the largest system size
of L = 25.

On the following page, figure F2, I used the symmetry sector solver to compute
the lowest eigenvalues of larger systems, solving for 32 eigenvalues in each sector.
They behave like before, some of the solutions L ≥ 24 showing overconvergence at
the lowest eigenvalue, and for smaller L, there appears to be a dip in the ground state
excitation energy at the critical point, because the lines for λ0 and λ1 get closer together
at h = 1. In addition, there appears to be little difference across the two sectors, but it
did make it possible to solve for a larger system. Because I told my Lanczos routine to
solve for the same number of eigenvalues anyway, I saw none of the promised 4-fold
speedup, when combining runtimes from both sectors, because my Lanczos algorithm
as implemented only needs to multiply vectors by the Hamiltonian, and that algorithm,
when using the symmetry property, only had to do half as many bit operations (1/2
as long a vector), but then there are two sectors. In total, I calculated twice as many
eigenvalues in the same amount of time.
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F2: Lowest eigenvalues by symmetry sector, closed b.c.
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7 Conclusion
This has been an absurd but instructive experience. Absurd because there was probably
no concrete benefit for making myself do it this way. Instructive because I learned how
to use new software.

Learning Fortran was going to hurt, but I didn’t expect it to hurt for so long. I
feel like I mainly struggled with how to organize my code into parts that worked well
with each other. I’ll say that Fortran discourages convenience and complexity but as
soon as you know what you want to do, implementation isn’t much harder than in other
programming languages.

I also spent lots of time reading the intel and MKL documentation. It is so dense
that you can’t diagonalize the manual to get a wide spectrum of knowledge from it in
any short amount of time. It is an excellent resource, in addition to the examples that
come installed with the oneAPI packages. Now I know that I could work with it much
better in the future since I’ll be less ignorant about where to find help and details.

Gnuplot was also a bear to pick up. There are a lot of details you need to get right
with any plotting program, and since there’s no native support for data frames, things
get tricky. I could probably make my programs more elegant by incorporating grep
to filter out all the lines I want in a data file, but the ease will never be as simple as with
using a program like R whose data frames are super straightforward to plot. Or using
python, pandas + matplotlib allow for similar operations.

If I could change other things about this assignment, it would be going through
the exercise of making sparse matrix formats (as paralyzing as all the choices that
need to be made are) and possibly changing the ”Discussion”, ”Results” format into
”Approach”, ”Results”, and ”Discussion” to talk more about the results themselves.
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8 Appendix: Code
All of my source code is available by viewing or cloning this git repository. The fol-
lowing sections are a minimal reference about my computer and the project.

8.1 Computing environment

I am using the Intel oneAPI base toolkit (with MKL) and HPC toolkit (with Fortran),
which are freely available here. Here is information about my computer and software:

1 $ uname -a
2 Linux kaos 5.10.0-5-amd64 #1 SMP Debian 5.10.26-1 (2021-03-27) x86_64 GNU/Linux
3 $ dpkg-query --show intel*kit gnuplot* | grep [0-9]$
4 gnuplot-data 5.4.1+dfsg1-1
5 gnuplot-nox 5.4.1+dfsg1-1
6 intel-basekit 2021.2.0-2883
7 intel-hpckit 2021.2l.0-2997

This pdf document was generated by latexmk using TEX Live 2020.

8.2 Building this project

Please refer to the README’s in the repository on how to compile the code and gen-
erate the data presented in this document.
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